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OUTLINE OF GENERAL PHYSICS

Niels Walet with George Lafferty and Judith McGovern
(from an original by Graham Shaw)

Introduction

An “outline” usually comprises a summary of important results, worked examples and some
problems. Each section of this outline of general physics is devoted to a particular area of physics.
Each section contains a few formulae which every physicist should know. These are intended as
reminders only; the symbols are not defined but have their usual meanings. Then there is a set
of questions chosen to cover the topics, taken from past third-year general papers. Where the
answer can be given without revealing how to do the problem, then it is given.

There will be nine general-paper workshops in semester 6, from week 2 through week 10, each
covering one section. You should try as many questions as possible from the relevant section
before each workshop.

The questions marked with * are the minimum that you should expect to cover for the work-
shops, and these must be attempted in advance.

The 2008 third-year general paper is included, as section 9. You should attempt this in full before
the ninth and last workshop, in week ten. Also included are the Table of Physical Constants and
Conversion Factors, which is issued with all physics examination papers, and a section on the
“Mathematical Formulae You Should Know”.

General physics exam papers for each of the last ten years are available on or through the teaching
web, https://teachweb.ph.man.ac.uk/.
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1 MECHANICS and VIBRATIONS

Newton’s Laws

Difficulties in this area rarely arise from not knowing Newton’s laws:

1. Every object in a state of uniform motion tends to remain in that state of motion unless an
external force is applied to it;

2. The rate of change of momentum equals the total force on an object, F = dp
dt ( F = ma for

constant mass);
3. For every action there is an equal and opposite reaction.

Many problems can be solved quickly and easily by applying conservation of mechanical energy
(true when the forces are conservative) and in many cases conservation of momentum (true when
there are no external forces).

Newton’s Laws for Rotation

We often use the equivalent of Newton’s second law for rigid-body rotation. With

L = Iω , I = ∑
i

mir
2
i , EL =

L2

2I =
1

2
Iω2 ,

we have Newton’s second law for torque

T = dL/dt = Idω/dt .

Note that these equations are easy to remember. Apart from the one defining the moment of
inertia, they are analogous to the ones for linear motion, with the substitutions:

m → I , v → ω , p → L , F → T .

Most of the time we shall only consider rotation around an axis of fixed direction, which can be
treated as one-dimensional. In that case we drop the vector notation above.

Damped Oscillators

The Equation of motion for a forced, damped simple harmonic oscillator is

ẍ + γẋ + ω2
0x = F/m .

For sinusoidal driving force F(t) = F0 cos ωt the amplitude is:

A(ω) =
F0/m

[(ω2
0 − ω2)2 + (γω)2]1/2

.

Critical damping occurs when γ = 2ω0. The full width of power curve at half maximum equals
γ, and the Q-value is Q = ω0/γ.
The amplitude of the oscillations in the absence of forcing is

A(t) = A0 exp(−γt/2) .
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1.1 Selected problems

1. An escalator inclined at 45◦ is moving up at a speed of 1 m s−1. A man who weighs 70 kg
walks up it at a speed relative to the escalator of 0.5 m s−1. At what rate is he doing work?
Answer: 243 W

2. * A bullet travelling horizontally strikes a large block of wood, suspended by thin wires,
and remains stuck in it. The impact causes the block to swing upward to a height of 20 cm.
If the bullet has a mass of 10 g and the block’s mass is 4 kg, what was the speed of the bullet
immediately before impact?
Answer: 793 m s−1

3. A projectile explodes into two pieces at the top of its trajectory, a distance L measured hor-
izontally from its launch point. The two resulting fragments have masses 1

4 and 3
4 of the

original mass and emerge horizontally from the explosion with the small fragment landing
back at the original launch point. How far from the original launch point does the larger
fragment land?
Answer: 8L/3

4. * A piece of space debris, initially at rest, falls radially towards the Moon. It is initially at
twice the Moon’s radius from the centre of the Moon. Calculate the velocity of the debris
when it hits the Moon’s surface.
The mass and radius of the Moon are 7.35 × 1022 kg and 1.74 × 106 m respectively.
Answer: 1.68 × 103 m s−1

5. Gravity Probe B has just been launched into a circular orbit round the Earth at a height of
650 km. Calculate the time it takes to complete one orbit.
Answer: 5900 s

6. An intrepid Australian digs a hole through the centre of the Earth from Queensland to Spain
and then drops a small object of mass m down the hole. Assuming that the Earth is of
uniform density, calculate the gravitational force acting on the mass at a distance R from the
centre of the Earth. Describe the motion of the mass.
Answer: GmRME/R3

E, where ME and RE are mass and radius of the Earth.

7. A neutron star has a moment of inertia of 1038kg m2 and has a rotation period of 2 millisec-
onds. The period is increasing by 10−13 sec/sec. What is the rate of loss of kinetic energy?

Answer: (π2/2) 1034J s−1

8. * A massless rope is wrapped several times around a solid cylinder of radius R = 20 cm and
mass M = 20 kg, which is at rest on a horizontal surface, as shown below.
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Someone pulls 1 m of the rope with a constant force of 100 N, setting the cylinder in motion.
Assuming that the rope neither stretches nor slips and that the cylinder rolls without slip-
ping, what is the final angular velocity of the cylinder and the speed at its surface?
The moment of inertia of a cylinder of mass M and radius R is MR2/2.
Answer: ω = 18.4 rad/s, v = 3.65 m s−1

9. A bowling ball is rolling without slipping up an inclined plane. As it passes a point O it has
a speed of 2.00 ms−1 up the plane. It reaches a vertical height h above O before momentarily
stopping and rolling back down. Determine the value of h.

If a hollow ball, composed only of a thin shell, underwent similar motion also moving at a
speed of 2.00 ms−1 at O, would the height it reached be less than, equal to, or greater than
that of the solid bowling ball? Give reasons for your answer.

The moment of inertia of a solid sphere of mass M and radius R is I = 2MR2/5.
Answer: h = 0.29 m

10. * It is proposed to fill the tender of a moving steam engine with coal dropping vertically from
a hopper. What is the extra tractive force which must be applied to the tender to maintain
constant velocity if it is to be loaded with 10 tonnes of coal in 2 s and proceeds uniformly
for 10 m during this time? Neglect any frictional effects.
Answer: 25 × 103 N

11. * A ball of mass m1 strikes a stationary ball of mass m2 with velocity v1. What is the maxi-
mum velocity which the second ball could acquire?
Answer: 2 m1v1/(m1 + m2)

12. * A vertical U-tube of uniform cross section open at both ends contains a liquid which fills
in total a length l of the tube. Calculate the period of oscillations of the liquid, if the liquid
in one of the arms of the U-tube is pushed down a small distance and then released.
Answer: 2π

√

l/2g

13. A sieve is moving up and down with an amplitude of x0 = 50 mm. If sand grains lying on
the sieve are supposed to become detached from the sieve during the harmonic oscillation,
what is the maximum vibration period?
Answer: 0.45 s

14. * The figure below shows the response of a forced oscillator as a function of driving fre-
quency. Estimate the decay time for the amplitude of free oscillations.
Answer: 1.3 s

5

15. A piece of thin copper rod, mass m, is formed into a square of side length l, and suspended
vertically on a wire of torsional constant κ. The moment of inertia of the square for rotations
about the vertical axis is ml2/6. Find the period of rotational oscillations.

Answer: T = 2π
√

ml2

6κ .

16. The side of a thin disk of mass m and radius r, pivoted at its centre, is attached to the end
of an unstretched spring of force constant k, as shown in the diagram below. The disk is
rotated slightly and released. Calculate the period of small oscillations.
Answer: ω =

√
2k/M
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2 DIMENSIONS, ASTRONOMY and DATA ANALYSIS

The method of dimensions

All equations in physics must be dimensionally consistent (i.e. both sides must have the same
units). It is sometimes possible to deduce an approximate formula, usually up to a multiplicative
constant, by combining the relevant quantities in such a way as to get the right units. This can
be used in practice by assuming that a physical quantity Z that depends on a number of other
quantities A, B, C, . . . must obey a power law to make the dimensions on the left and right-hand
sides be equal. We thus set Z = cAαBβCγ . . ., with c a dimensionless constant. We solve by
equating the powers on the basic units on left- and right-hand sides (usually length, time and
mass are sufficient; occasionally we need to consider temperature and current; the candela is
not usually required). If there is one unique set of powers α, β, γ etc. that satisfy the equality
of dimensions, then we have determined a suitable functional form of Z. The method fails to
provide a unique solution if there is a dimensionless quantity of the form Aα′Bβ′Cγ′

. . ..

Note that temperature usually enters into physical quantities as kT or equivalently RT, which
both have the dimensions of energy. The SI units of viscosity are kg m−1 s−1. Surface tension may
be considered as force per unit length or energy per unit area, and has units of kg s−2.

Introductory Astronomy

Kepler’s third law: T2 = kR3 (k = 1 if T is in years and R is in astronomical units).

Blackbody radiation: P = σT4 is power emitted per unit area. (Stefan’s law)

Difference in magnitude: ∆m = 2.5 log10 R, where R is the brightness ratio.

Non-relativistic Doppler shift: ∆λ/λ = v/c.

Reduced mass for a 2-body system: µ = m1m2/(m1 + m2).

Orbit around common centre of mass: m1R1 = m2R2.

Data Analysis for Laboratory

If f = f (x, y, z, . . .) and x, y, z, . . . represent uncorrelated measurements then

σ2
f =

(

∂ f

∂x

)2

σ2
x +

(

∂ f

∂y

)2

σ2
y +

(

∂ f

∂z

)2

σ2
z + . . . .

Special cases:

If f = x ± y then σ2
f = σ2

x + σ2
y ;

If f = xmy−n then
(

σf

f

)2
= m2

(

σx
x

)2
+ n2

(

σy

y

)2
.

For a set of measurements xi each with the same error σ, the best estimate of the true value is the
mean

x =
1

n ∑ xi .
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The error on the mean is
σx =

σ√
n

.

The distribution of the measured values xi has variance:

s2 =
1

n ∑(xi − x̄)2 ,

and

√

n

n − 1
× s is the best estimate of σ, the error on each measurement.

The Binomial distribution gives the probability of n “successes” in N trials:

P(n, N) = pn(1 − p)N−n N!

n!(N − n)!
,

where p is the probability of success in one trial.

The Poisson distribution is the limit of the binomial distribution for p → 0 and N → ∞. If µ is the
expected number of “successes”, then

P(n) =
µne−µ

n!
.

The standard deviation of the Poisson distribution is
√

µ. If µ is unknown, the best estimate of

the standard deviation is σn =
√

n.

2.1 Selected problems

1. * By dimensional arguments show that the speed of waves on a deep body of liquid is
independent of the liquid density if the waves are long enough to be controlled by gravity,
but not if they are so short as to be controlled by surface tension.

2. After being deformed, a spherical drop of an incompressible liquid will execute periodic
vibrations. Use the method of dimensions to obtain an expression for the frequency of these
vibrations in terms of the physical properties of the drop.

3. * The upthrust force F on an aeroplane wing of fixed cross-sectional shape is proportional
to the length of the wing. Use a simple dimensional argument to show how it depends on
the width of the wing d, the density of air ρ, and the velocity of the aeroplane v.

4. Estimate the pressure at which a gas of argon atoms, at a temperature of 300 K, will begin
to show deviations from the ideal gas behaviour due to the finite size of the atoms. [Use the
method of dimensions to get an order of magnitude answer.]
Answer: Of order 109 Pa

5. * The filament of an incandescent light bulb emits power per unit area at a rate proportional
to σT4, where σ is the Stefan-Boltzmann constant and T is the absolute temperature. If the
current in the bulb changes so that its temperature falls from 3000 K to 2900 K, estimate by
what fraction the total power output is reduced? Assume that the area remains the same.
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6. Not suitable for some joint honours programmes.
Draw a Hertzsprung-Russell diagram, clearly labelling the axes. Show the main sequence
and the regions where red giants, blue super-giants and white dwarfs are located.

7. * Not suitable for some joint honours programmes.
A type-II Cepheid variable star is observed in a distant galaxy. It has a period of 100 days
and a peak brightness 10 magnitudes less than the brightness of a 100-day period, type-II
Cepheid variable observed in the Large Magellanic Cloud (LMC). Given that the LMC lies
at a distance of 150,000 light years from our Sun, calculate the distance to the distant galaxy.
Answer: 1.5 × 107 light years

8. Venus orbits the Sun every 224.7 days. Assuming that the orbits of the Earth and Venus are
both circular, calculate the round-trip travel time of a radar pulse reflected from Venus at
the time of the Venus transit of the Sun in June 2004.
Answer: 275 s

9. The black hole remnant of a star has a mass of 12 Solar Masses. Calculate its Schwarzschild
radius.
Answer: 36 km

10. * The radial velocity of a 1 solar mass star is seen to vary sinusoidally by ±45 m s−1 with
a period of 1095 days. Assuming that the Earth lies in the plane of the orbit of the object
causing this stellar motion, calculate the object’s mass in solar masses and its distance from
the star in astronomical units (AU).
Answer: 2 × 10−3 solar masses and 2.1 AU

11. * A surveyor measures the angle of elevation of a mountain top from the horizontal to be
22.2± 0.1◦ and the direct distance to the top of the mountain to be 1536 ± 3 m. Calculate the
vertical height of the mountain above the surveyor, and the error in that height.
Answer: 580.4 ± 2.7 m

12. * Two experimental methods, each free from systematic errors, were used to measure the
height, h, of a building. The mean values obtained were hA = (71 ± 4) m from 64 measure-
ments using method A and hB = (68 ± 6) m from 16 measurements using method B. Show
which method has the higher precision. How many extra readings must be taken using
method B to ensure that the final results for hA and hB have the same precision?
Answer: 20

13. A sample contains the measurements 3.4, 3.6, 3.7, 3.8. Estimate the standard deviation of
the parent population.
Answer: 0.17

14. I suspect that a coin is biased, turning up heads on 45 percent of tosses. How many trials
would I need to confirm with reasonable certainty that it is biased?
Answer: Of order 1000.

15. Very low intensity pulses of light have a Poisson distribution in the number of photons with
a mean number of photons/pulse of 10. They are detected with photomultipliers with a
photoelectric efficiency of 25 per cent. What is the probability of detecting one pulse of light
if the photomultiplier is sensitive to single photo-electrons? The Poisson formula for the
probability of m photons, when the mean is n̄, is: pm = n̄me−n̄/m! .
Answer: 0.92
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3 RELATIVITY AND PARTICLE PHYSICS

The trickiest bit is remembering the factors of c, so always check them by dimensions, remember-
ing that E, pc, and mc2 all have dimensions of energy.

Lorentz Transformation

x′ =γ (x − vt) ,

y′ =y , where γ ≡ 1

(1 − v2/c2)1/2

z′ =z ,

t′ =γ (t − vx/c2) .

Time dilation and Lorentz contraction:

t = γt0 , L = L0/γ .

Velocity addition

u′
x =

ux − v

1 − uxv/c2
,

u′
y =

γuy

1 − uxv/c2
, and similarly for uz.

Energy and momentum
E = γmc2 , p = γmv ,

implying
E2 = (pc)2 + (mc2)2 and γ = E/(mc2) .

By definition the kinetic energy is E − mc2.
Invariant mass: a Lorentz invariant, which is conserved in collisions and decays

W2 =

(

∑
i

Ei

)2

−
(

∑
i

pic

)2

.

Exponential decay law

N(t) = N(0) e−t/τ = N(0) (1/2)t/τ1/2 ,

where τ is the “lifetime” ( i.e. mean lifetime) and τ1/2 = τ ln 2 is the half-life.
Photons and other massless particles

E = pc = hc/λ .

Compton Scattering:

λ′ = λ +
hc

mc2
(1 − cos θ) .

Particles You should be familiar with the quantum numbers, quark content (where appropriate)
and reactions (strong, EM, weak) of the following particles: p, n, Λ, Σ, Ω, pions, kaons, e, µ,
τ and neutrinos.
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3.1 Selected problems

1. A rocket is launched at a speed of 0.5c from the earth. After one year measured by a timing
mechanism in the rocket a signal is sent back to earth. How long after the launch is the
signal received?

Answer:
√

3 years

2. * A beam of kaons is aimed at a target 10 m away. If the kaons have a momentum of 5
GeV/c, calculate the fraction of them that reach the target without decaying. (Kaon mean
lifetime = 1.2 × 10−8 s: kaon rest mass = 500 MeV/c2 )
Answer: 0.76

3. A radioactive source of half-life 1 year is found to emit 106 particles per second. It is then
sent by rocket at a speed of 0.6c on a round trip to a manned space station; it arrives back
exactly one year later. What is the disintegration rate when it arrives back?
Answer: 5.7 × 105 s−1

4. * Two protons, each with kinetic energy of 1 GeV, are made to collide head-on. Calculate
their relative velocity before collision.
Answer: 0.991c

5. * A photon and a particle of mass 10 eV/c2 are produced simultaneously in a galaxy 150,000
light years away. Both particles have energy 10 MeV. Estimate the difference in arrival time
between the two particles.
Answer: 2.4 s

6. A 1.022 MeV photon is Compton scattered through 90◦ by an electron and emerges with an
energy of 0.341 MeV. What is the speed of the recoiling electron?
Answer: 0.903c

7. * A neutral π0 meson (rest mass 135 MeV/c2) is observed to decay in flight into two photons
each with an energy of 80 MeV. Calculate the angle between the emitted photons.
Answer: 115◦

8. A stationary Σ+ particle decays into a proton and a γ-ray of energy 224 MeV. What is the
recoil kinetic energy of the proton and the rest mass of the Σ+ particle?
Answer: 26 MeV; 1188 MeV/c2

9. At HERA, a 920 GeV proton beam collided with a 27.5 GeV electron beam. What is the
heaviest particle which could, theoretically, have been created there?
Answer: 318 GeV

10. * A beam of protons is incident on a hydrogen target. Calculate the minimum energy of the
incident proton if a K− particle is to be observed among the reaction products. (The proton
mass is 938 MeV/c2; the charged kaon mass is 494 MeV/c2.)
Answer: 3.43 GeV

11

11. * Classify the following reactions into strong, EM, weak or forbidden, explaining your rea-
sons:

p + p → K+ + π− + Λ

Λ → K− + p ,

K− + p → Λ + γ .

νµ + p → µ− + π+ + π0 + p ,

K+ → π0 + π+ + γ .

(Masses: mp = 938 MeV/c2; mΛ = 1116 MeV/c2; mπ± = 140 MeV/c2; mK± = 494 MeV/c2;

mµ = 106 MeV/c2)
Partial answer: One EM, two weak and two forbidden.
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4 QUANTUM MECHANICS, ATOMS AND NUCLEI

Photoelectric effect : Maximum energy of emitted electrons is Emax = hc/λ − φ where λ is the
wavelength of incident photons and φ is the work function of the surface.

De Broglie relations: p = h/λ = h̄k and E = hν = h̄ω.
Momentum operator, eigenstates (one dimension):

p̂ = −ih̄
d

dx
, ψp = eikx = eipx/h̄ .

Energy levels for simple harmonic oscillator:

ǫn =

(

n +
1

2

)

h̄ω ,

where ω = (k/m)1/2 and k is a constant analogous to the classical spring constant.
Energy levels for H-like ions:

ǫn = −Z2R∞/n2 ,

The formula and value for the Rydberg constant are given in the Table of Constants.
The single electron energy levels in atoms, in order of increasing energy, are
1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p,....

Expectation values (for normalised wavefunction ψ):

Ō =
∫

ψ(x)∗Ô ψ(x) dx ,

First order Perturbation theory (for normalised wavefunction ψ0):

∆E =
∫

ψ0(x)∗∆V(x) ψ0(x) dx .

Natural line width:
Γ = ∆E = h̄/τ .

Heisenberg Uncertainty Principle:
∆x∆p ≥ h̄/2 ,

where
(∆p)2 = p2 − p 2 , etc. .

For bound states p = 0 so that (∆p)2 = p2. For simple attractive potentials, the uncertainties
are near the minimum allowed by the Uncertainty Principle, so:

p2 = (∆p)2 ≈
(

h̄

∆x

)2

.
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Angular momentum The same rules apply to all angular momentum vector operators X = J, L,
S, j, l, s. They are:
(a) Angular momentum eigenstates with quantum numbers X, mX have

|X| = h̄
√

X(X + 1) , Xz = mX h̄ ,

where the allowed values of mX = X, X − 1, ......,−X.

(b) Addition of angular momentum. If X = X1 + X2 the allowed values for the quantum
number X are

X = X1 + X2, X1 + X2 − 1, . . . , |X1 − X2| .

Spectroscopy Students should be familiar with the spectroscopic notation 2S+1LJ for atomic states.

4.1 Selected problems

1. Photoelectrons with a maximum energy of 0.4 eV are observed when light of wavelength
450 nm is incident on a surface. Calculate the maximum wavelength of light which will
produce photoelectrons from this surface.
Answer: 530 nm

2. * An atomic state has an emission line of wavelength 6× 10−7 m and natural width 10−13 m.
Estimate its lifetime.
Answer: 2 × 10−9 s

3. * Estimate, using the Uncertainty Principle, the kinetic energy of an electron if it were bound
in the nucleus.
Answer: ∼ 200 MeV for R ∼ 1 fm

4. * A muon is a particle very similar to an electron but with mass 105.6 MeV/c2, and a muonic
atom is the bound state of a muon and a proton. Calculate the binding energy of the ground
state of a muonic atom.
Answer: 2.53 keV

5. Explain quantitatively how the wavelength for the n = 2 to n = 1 transition for deuterium
differs from that for hydrogen, ignoring hyperfine structure. The masses of H1, H2 and e are
1.00728, 2.01355 and 5.58 × 10−4 amu respectively.

6. A lead target (atomic number Z = 82) is bombarded by an electron beam to produce X-
rays. Estimate the minimum electron kinetic energy required to eject an electron from the
innermost shell.
Answer: 90 keV

7. A particle is confined by the one-dimensional square-well potential

V(x) =

{

−V0 −a < x < a

0 otherwise
.

Sketch the wave functions both inside and outside the well for the three lowest energy lev-
els, assuming that they are bound states.
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8. The normalised wavefunction for the 1s electron in the hydrogen atom is

ψ =
1√

πa3/2
0

e−r/a0 .

What is the mean value of (1/r2) in terms of the Bohr radius a0?
Answer: 2/a2

0

9. * The normalised energy eigenfunctions and corresponding eigenvalues for a particle in a
potential well are φn(x) and En, where n is the quantum number. At time t = 0 the state of
a particle is

Φ(x, 0) =
3

5
φ1(x) +

4

5
φ2(x) .

Write down the expression for Φ(x, t) for the time-dependent wavefunction. What results
could you expect to get for a measurement of the energy, and what are their probabilities?

10. An electron is described by the wavefunction

ψ = A sin(2πx/L) ,

where L = 3 × 10−8 m. What are the possible outcomes of a measurement of the electron’s
x-component of momentum?
Answer: ±41.3 eV/c

11. A particle is in the ground state in a one-dimensional box given by the potential

V(x) =

{

0 0 < x < a

∞ otherwise
.

A small perturbation V = V0x/a is now introduced. Show, correct to first order in pertur-
bation theory, that the energy change in the ground state is V0/2.

The normalised wave functions of V(x) are Ψn =

√

2

a
sin

(nπx

a

)

.

12. Give a brief explanation of the origin of the splitting of the sodium D lines.

13. * A p state in a hydrogen-like atom is found to be split into two states by the spin-orbit
coupling Vls = λl.s. Calculate the total angular momentum and energy shift of each of the
two levels.
Answer: λh̄2/2 (j = 3/2) ; −λh̄2 (j = 1/2)

14. Draw a clearly labelled graph indicating the main features of the dependence of the average
binding energy per nucleon of the stable nuclei as a function of their mass number.

15. * The magnitude of the total angular momentum of a particle is given by |L| =
√

6h̄. De-
termine the possible values that could be obtained in a measurement of the z-component of
L.

16. * A spin 1
2 particle is observed (for example, in a Stern-Gerlach apparatus) to be in the state

sz = h̄
2 . The particle then passes through an apparatus that measures sy and is found to be

in the state with sy = − h̄
2 . What was the probability of obtaining that result?

The particle then passes through a further apparatus that measures sz. What are the possible
results of this measurement, and with what probability will they be obtained?
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5 GASES, LIQUIDS and SOLIDS

Boltzmann distribution
pr ∝ e−ǫr/kT .

Maxwell-Boltzmann speed distribution

f (v) ∝ v2 exp

(

−mv2

2kT

)

.

Equipartition of energy

E =
1

2
kT per degree of freedom.

Bragg’s law
nλ = 2d sin θ .

Mean free path The average fraction of particles travelling a distance x without undergoing colli-
sions is

N(x)

N(0)
= e−x/λ ,

where the mean free path, for number density n, is:

λ =
1√
2nσ

.

Ideal gases
PV = nRT = NkT and E = E(T) ,

where n is number of moles and N is number of particles. The energy is a function of
temperature only, independent of pressure. In addition, the difference of specific heats is

CP − CV = nR ,

and
PVγ = constant

for an adiabatic expansions where γ ≡ CP/CV .

STP: Standard temperature and pressure are defined as T = 0◦C and p = 1 atm.

Note: The symbol n has been used with three different meanings in the equations above!

5.1 Selected problems

1. * Estimate the mean free path and typical speed of atoms in a helium atmosphere at standard
temperature and pressure.
Answer: λ ∼ 8 × 10−7 m (d = 1Å) and speed ∼ 1.3 × 103 m s−1

2. Estimate the mean free path of argon atoms when the gas is at 300 K and 2 atmospheres
pressure. (The diameter of an argon atom is 4 × 10−10 m).
Answer: 3 × 10−8 m
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3. * Derive an expression for the most probable speed of a molecule in a sample of gas at
temperature T.
Answer:

√
2kT/m

4. In a cloud chamber for photographing the tracks of α-particles the temperature of the air is
10◦C. If its volume is increased in the ratio 1.375 to 1 by a rapid expansion, calculate the final
temperature of the air (the ratio of specific heats of air is 1.41).
Answer: 248 K

5. A skyscraper is 400m high. Estimate the atmospheric pressure at the top of the skyscraper
assuming that the building has a uniform temperature of 20◦C.
Answer: 0.98 × 105 Pa = 0.96 atmosphere

6. * In a large underground cave, the concentration of helium in the air at the base is mea-
sured to be 1.00 × 10−4 (this is the ratio of the number of He atoms to the total number of
molecules). If the air in the cave is at a constant temperature of 10◦C, what is the concentra-
tion of helium at the top of the cave, 300 m higher?
Answer: 1.03 × 10−4

7. * Explain what is meant by the principle of equipartition of energy. Use it to determine the
heat capacity CV of a diatomic gas of N molecules.

The molar specific heat cV of hydrogen at a temperature of 55 K is measured to be approx-

imately 12.5 J mol−1 K−1, but at a temperature of 320 K is found to equal approximately

20.8 J mol−1 K−1. Explain these results in the light of those predicted by equipartition.

8. * The vibrational levels of carbon monoxide are spaced by 6.42× 1013 Hz. Would you expect
vibrational excitations to make an important contribution to the specific heat of CO at room
temperature?
Answer: Tv ∼ 3000 K i.e. negligible at room temperature

9. What features of the interatomic potential energy curve are responsible in non-ionic solids
for (i) the latent heat of sublimation (ii) thermal expansion?

10. The latent heat of vaporisation of carbon tetrachloride is 3.2 104 J mo1−1, Estimate the bind-
ing energy between pairs of molecules in the liquid state.
Answer: Approximately 0.07 eV

11. Estimate the molar heat capacity of argon gas at constant pressure. Comment on any dif-
ference between your estimate and the measured value of 21.13 J K−1 at room temperature
and pressure.

12. * X-rays of energy 25 keV show a first order Bragg reflection from a crystal at an incident
angle of 10◦ to the reflecting plane. Neutrons of energy 0.025 eV are Bragg reflected from
the same crystal planes. For what angle does this reflection take place?
Answer: 39.3◦.

13. X-rays with a wavelength of 0.16 nm are reflected off a crystal of silicon. The first interfer-
ence peak is observed at an angle of 36◦ to the normal to the crystal plane. Find the spacing
of the atoms in silicon.
Answer: 1.0 × 10−10 m
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6 THERMAL AND STATISTICAL PHYSICS

Some relevant formulae, e.g. the ideal gas laws, have been given under “Gases, Liquids and
Solids”.

First law of thermodynamics
∆E = Q + W .

Fundamental thermodynamic identity (hydrostatic systems)]

dE = TdS − PdV .

Reversible processes
d̄Q = TdS , d̄W = −PdV .

Ideal heat engines
Q1

T1
=

Q2

T2
.

Isolated systems (fixed E, V).
S = k ln Ω , ∆S ≥ 0 .

Canonical systems (fixed T, V)]

Partition function: Z = ∑
i

e−ǫi/kT .

Boltzmann distribution: pr =
e−βǫr

Z
, β ≡ 1

kT
.

Mean energy: E = −
(

∂ ln Z

∂β

)

V

.

Free energy (Helmholtz): F = E − TS = −kT ln Z , ∆F ≤ 0 .

Black body radiation: Stefan’s Law for power emitted

σAT4 .

Density of states in three dimensions

D(k)

(

≡ dn

dk

)

=
V k2

2 π2
.

Fermi-Dirac distribution
1

eǫ/kT + 1
.

Bose-Einstein distribution
1

eǫ/kT − 1
.

Fermi momentum for spin-half particles at zero temperature

pF = h̄(6π2n)1/3 .

Bose-Einstein condensation Approximate criterion for the critical temperature for Bose-Einstein con-
densation

λT ≈ n−1/3 .
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6.1 Selected problems

1. The filament of a 100 W lamp has a radius of 12µm and is 0.3 m long. Estimate its working
temperature.
Answer: 3000 K

2. * Estimate the temperature of a tumbling asteroid at a distance of 350 million km from the
Sun. Assume that the surface temperature of the Sun is 6000 K and that the asteroid is a
black-body.
Answer: 190 K

3. * A mole of an ideal diatomic gas is compressed adiabatically by a factor of 2 in volume.
How much work is required if it is initially at STP?
Answer: 1.81 kJ

4. A mole of ideal gas initially at STP is compressed till the volume has halved but the temper-
ature is unchanged. This is done in two different ways:
a) isothermal compression;
b) isobaric compression followed by isochoric heating.
Draw these two processes on a PV plot, and calculate the work done in each case. Comment
on the result in the light of the first law of thermodynamics.
Answer: Work done is (a) 1.57 kJ, (b) 1.13 kJ

5. One 20th of a mole of ideal gas is confined within a volume of 1 litre. A partition is removed
to allow it to expand freely into a vacuum, so that the final volume is 2 litres; no heat is
exchanged with the surroundings during the process. What are the changes in energy, tem-
perature and entropy of the gas?
Answer: ∆S = 0.288 J K−1

6. Calculate the change in entropy of 0.5 kg of ice at 0◦C when it is heated to steam at 100◦C.
(The latent heats of fusion and evaporation are 3.40 × 105 J kg−1 and 2.26 × 106 J kg−1 re-
spectively. The specific heat of water is 4200 J kg−1 K−1).
Answer: 4.30 × 103 J K−1.

7. * Two identical bodies of constant specific heat are at temperatures of 0◦C and 100◦C. What
is the lowest temperature to which both bodies can be brought together in equilibrium by
transferring heat from the hotter to the colder body by means of a reversible heat engine?
Answer: 319 K

8. * A perfectly reversible heat pump heats a building at 20◦C by taking heat from the atmo-
sphere at 5◦C. If the heat pump is run by an electric motor whose efficiency is 80%, what is
the cost of 1 kWhr of heat supplied? (1 kWhr of electricity costs 9p.)
Answer: 0.6p

9. Estimate the steady-state cost per week of running a domestic electric refrigerator. Assume
that room temperature is 20◦C and the internal temperature is 2◦C. The walls are 15 mm
thick, having a total surface area of 8 m2 and a thermal conductivity of 2× 10−2 W m−1 K−1.
The cost of electricity is 9p per kWhr.
Answer: 19p
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10. * A two-level system has an energy splitting ǫ between the upper and lower state. Show
that at high temperatures the heat capacity per system varies as 1/T2.

11. Estimate the density of neutrinos for which the Fermi temperature would be 3 K, assuming
that neutrinos have a rest mass of 10 eV/c2.
Answer: 1.63 × 1015 m−3 (assumes two spin states)

12. * In the original experiment showing Bose-Einstein condensation of Rubidium 87, 20,000
atoms were trapped and the condensate appeared as the temperature was lowered to 170 nK.
Estimate the size of the condensate cloud.
Answer: Of order 20 µm across
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7 ELECTRICITY AND MAGNETISM

Fields

The Lorentz force:
F = q (E + v × B) .

Maxwell’s equations:

div D = ρf , div B = 0 ,

curl E = −∂B/∂t , curl H = jf + ∂D/∂t ,

where in vacuum
D = ǫ0 E , B = µ0 H .

The charge and current are the “free” charge and current.
In linear media, Maxwell’s equations hold for smoothly varying “local averaged” fields
where the subsidiary D and H fields are now given by

D = ǫ0(E + P) = ǫ ǫ0 E , B = µ0(H + M) = µ µ0 H .

In addition, for conductors we have Ohm’s law:

j = σ E .

Field energy density:
E

V
=

1

2
( D · E + B · H ) .

Boundary conditions :
B⊥ and E‖ are continuous.
D⊥ and H‖ are continuous in absence of free surface charges and currents.

Integral forms of Maxwell’s equations:

Gauss’s theorem
∫

E · dS = Q/ǫ0 ,

Faraday’s law E = −dΦ

dt
≡ − d

dt

[

∫

B · dS

]

,

and provided the displacement current vanishes

Ampere’s law
∮

C
H · dl = Ienc ,

where Ienc is the current through the area enclosed by C.

Circuits

Resistors, capacitors and inductors:

V = I R, V = Q/C, V = L dI/dt .
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The power dissipated by a resistor is

W = IV = I2R = V2/R ,

The energy stored in a capacitor or an inductor is

E = CV2/2 or E = LI2/2, respectively.

AC circuits Here V = IZ where individual impedances are given by

ZR = R , ZL = i ω L , ZC = 1/i ω C .

Like resistances, impedances in series and in parallel combine as

Zser = Z1 + Z2 ,
1

Zpar
=

1

Z1
+

1

Z2
.

and the average power dissipated in a load circuit is

W = I2
rms|Z| cos θ = IrmsVrms cos θ ,

where Irms = Imax/
√

2 etc.. For a resistor, this reduces to the familiar result

W = Vrms Irms = V2
rms/R = I2

rmsR .

Resonant frequency of an “LC-circuit”:
ω2 = 1/L C .

7.1 Selected problems

1. * When a beam of electrons is passed through a region where there are simultaneously
present an electric field of 103 V m−1 and an orthogonal magnetic field of 10−3 T it is found
that the electrons are not deflected. When the electric field is absent the electrons move in a
circle of radius 5.7 mm. Calculate the velocity of the electrons and their charge to mass ratio.
Answer: 106 m s−1; 1.75 × 1011 C kg−1

2. A sulphur sphere of radius 0.1m and relative permittivity 3.4 is uniformly charged through-
out its volume to a charge density of 10−5 C m−3. What is the electric field at a point 0.05 m
from the centre?
Answer: 5.5 × 103 V m−1

3. Find the smallest radius of curvature that can be used for the corners of a conductor charged
to 6× 105 V if breakdown is avoided when the dielectric strength of the air is 3× 106 V m−1.
Answer: 0.2 m

4. * Assuming that the largest electric field that can be sustained in air is 106 V m−1, calculate
the maximum electric energy density that can be created in air.
Answer: 4.4 J m−3

5. * An infinite metal plate is kept at zero potential. A charge A of 128 coulombs is positioned
above the plate, and another charge of 9 coulombs is held half-way between A and the plate.
Show that A is in equilibrium.
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6. A round, straight copper wire of radius 1 mm carries a steady current of 1 A. Find and
sketch the resulting magnetic field both inside and outside the wire.
Answer: 0.2r tesla and 2 × 10−7/r tesla, where r is in metres

7. * A wire loop of resistance 0.1 Ω has an area of 2.5 × 10−3 m2. It is initially in a uniform
magnetic field of 1 T, which is normal to the plane of the loop. How much charge flows
round the loop when it is removed to a region of zero magnetic field?
Answer: 25 mC

8. * A ferromagnetic bar with a length of 0.5m and a relative permeability of 1000, is bent into
a C shape leaving a 2mm parallel gap between the bar ends. A 2000-turn coil wound on the
bar carries a current of 0.2 A. What is the magnetic field in the gap?
Answer: 0.20 T

9. Define what is meant by the polarisation of an electromagnetic wave. State how two linearly
polarised plane waves can be combined to form a circularly polarised wave.

10. A 10 µF capacitor is charged to a voltage V and its terminals are then connected together
through a 5 cm length of constantan wire of diameter 0.05 mm. What is the maximum value
of V which will not result in fusing the wire?

Assume that the electrical time constant is so short that heat losses may safely be neglected.

Specific heat of constantan = 420 J kg−1 K−1,
Density of constantan = 8880 kg m−3,
Melting point of constantan = 1560 K.
Answer: 305 V

11. * A toroidal coil is made by winding a length of wire uniformly round a non-magnetic
insulating thin ring. A 10 µF capacitor charged to 400 V is discharged through the coil. Find
the peak value of the magnetic field, given that the volume enclosed by the coil is 100 cm3.
Assume that the resistance of the coil is negligible.
Answer: 0.142 T

12. A long solenoid, wound with 10,000 turns per metre, is bent to form a toroidal coil, enclosing
an air volume of 50 cm3. What is its self-inductance?
Answer: 6.28 mH

13. A 75 W non-inductive light bulb is designed to run from an ac supply of 120 V rms to 50 Hz.
If the only supply available is 240 V rms show that the bulb can be run at the correct power
by placing either a resistance R, or a capacitor C in series with it. Find the values of R and C
and the power drawn from the supply in each case.
Answer: 192 Ω; 150 W; 9.6 µF; 75 W

14. A circuit has a capacitance C, a resistance R and an inductance L in series. The capacitor is
initially charged to a voltage V0 at time t = 0 and then a switch is closed to complete the
circuit. Given that R ≪ |ZC| and R ≪ |ZL|, draw a graph to show how the voltage across
the resistor varies with time.
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8 WAVES AND OPTICS

Doppler shift

Nonrelativistic
δλ

λ
=

v

c
,

Relativistic (colinear)
λ′

λ
=

(

c + v

c − v

)1/2

.

Beat frequency:
fbeat = | f1 − f2| .

Phase and group velocity

vp =
ω

k
, vg =

dω

dk
.

Width of a wave packet
∆x ∆k >∼ 1 ,

which gives the uncertainty principle ∆x ∆p >∼ h̄ on substituting p = k h̄.
Refractive index

n =
c

vp
=

λ0

λ
,

where λ0 is the wavelength in vacuum.
Snell’s law

sin θ1

sin θ2
=

c1

c2
=

n2

n1
.

The lens formula
1

u
+

1

v
=

1

f
.

Constructive interference In vacuo or a homogeneous medium the condition is

Path difference = n λ .

More generally, this result must be modified to take account of the change of wavelength
for different refractive indices (see above), and the phase change of π which occurs when
light is reflected at a boundary with a less dense medium.

Resolving power: diffraction limit
δθ ≃ 1.22λ/d .

Here δθ is the angular separation of the peak and first minimum of the diffraction pattern
(Rayleigh criterion) so that the full angular width induced in a parallel beam on passing
through an aperture is 2δθ.

8.1 Selected problems

1. An observer standing on a railway platform hears the whistle of an approaching train
change its pitch as it passes by from 880 Hz to 720 Hz. What is the speed of the train,
given that the speed of sound in air is 330 m s−1?
Answer: 33 m s−1
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2. * The second resonance of an organ pipe open at both ends has the same frequency as the
second resonance of a pipe 0.3 m in length open at one end only. What is the length of the
open pipe?
Answer: 0.4 m

3. An empty room with sound-reflecting walls has a volume of 50 m3. Estimate the number of
(resonant) acoustic modes with frequencies between 440 Hz and 880 Hz. You may assume
that the speed of sound in air is 330 m s−1.
Answer: ∼ 3470

4. * The phase velocity of surface waves of small wavelength λ on a deep liquid is given by

v2
p =

2πS

λρ

where S is the surface tension and ρ is the density. Determine the ratio of the group and
phase velocities.
Answer: vg/vp = 3/2

5. The group velocity of waves in a medium is found to be twice the phase velocity. Find the
relation between the angular frequency ω and the wave number k in the medium.
Answer: ω = ck2

6. * Two guitars have been tuned independently and produce beats when the A-strings are
played together.

One guitar is tuned correctly so the A-string oscillates at a frequency of 110 Hz. If the beat
frequency is 3

4 Hz, what are the possible frequencies of the other A-string vibration?

The frequency of oscillation of a string is proportional to the square root of the string tension.
By what fraction must the tension in the out of tune guitar string be changed to bring it in
tune?
Answer: 0.014

7. The note from a tuning fork of unknown frequency makes three beats per second with the
note from a standard fork of frequency 440 Hz. The beat frequency increases when a small
piece of wax is put on a prong of the first (unknown-frequency) fork. What is the frequency
of this fork?
Answer: 437 Hz

8. Two laser beams with powers of 100µW and 1µW are combined so that they interfere on the
surface of a detector. If the frequency of one beam is slightly different from the other, what
is the magnitude of the power modulation at the detector?
Answer: 81 - 121 µW

9. With the assistance of a sketch, explain how a mirage is formed.

10. * In normal use, is the image formed by a magnifying glass real or virtual? For an observer
with a near point at 25 cm from the eye, what is the greatest magnification that can be
obtained with a magnifying glass of focal length 10 cm and where should the object be
placed to achieve it?
Answer: 3.5
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11. * It is required to broadcast a radio signal at 3000 MHz from the Moon to the whole of the
nearside of the Earth. What diameter of antenna should be used? Take the distance of the
Moon from the Earth to be 400,000 km.
Answer: 7.6 m

12. At what distance does diffraction limit the reading of a car registration number plate?
Answer: Of order 100 m

13. * A diffraction grating has 10,000 lines in 2 cm. What is the angular separation, in second
order, of a doublet of wavelengths 6438.0 Å and 6438.1 Å, if the grating is used with normal
incidence?
Answer: 1.3 × 10−5 rad

14. A pair of narrow parallel slits illuminated by monochromatic light of wavelength 500 nm
produces interference fringes on a screen. When one of the slits is covered by a thin film
of transparent material of refractive index 1.60, the zero order bright fringe moves to the
position previously occupied by a bright fringe of the 15th order. What is the thickness of
the film? How might the zero order fringe be identified in practice?
Answer: 12.5 µm

15. * A plane parallel, monochromatic light source of wavelength 650 nm is used to illuminate
two parallel slits of equal width, whose centres are separated by 0.15 cm. The fifth order of
interference is the first order not observed. How wide are the slits?
Answer: 0.03 cm

16. Unpolarised light of intensity I0 is incident on three perfect linear polarisers, placed in se-
ries behind each other. The transmission axis, T, of the first is vertical, the second has its
transmission axis at an angle θ to the vertical and the third has its transmission axis at 60◦

to the vertical.

T

θ

T

60o

T

The second polariser is initially vertical (θ = 0) and is then rotated. At what values of θ
will the final intensity be zero? What is the general expression for the light intensity as a
function of θ?
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PHYS30010

1. What is the resolving power of the human eye at a wavelength of 500 nm. (Assume
that the diameter of the pupil is 5 mm.)

What is the diameter of a radio telescope with the same resolution but operating at
a frequency of 10 GHz?

2. An electron with kinetic energy of 5 eV moves in a circular orbit of radius 1 mm in a
magnetic field. What is the magnitude and direction of the field?

3. A frictionless chain hangs on two inclined planes, as indicated in the drawing. Prove
that the chain is in equilibrium, i.e. will not slip either to the left or to the right.

4. Compute the wavelength of a photon emitted when an electron transits from an energy
level with n = 167 to that with n = 166 of the Hydrogen atom.

5. Write down an expression for the pressure in an isothermal atmosphere at
temperature T as a function of the height Z, the surface pressure po and the average
molecular weight m of the atmospheric constituants.

Calculate the scale height (at which the pressure has fallen to 1/e of its surface value)
of the Earth’s atmosphere, given that m = 29 a.m.u.

P.T.O.
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PHYS30010

6. A beam of 0.27 eV neutrons is directed onto the surface of a crystal with interatomic
spacing 2 × 10−10 m. What is the angle between the surface and the incident beam at
which strong diffraction will be observed?

7. A parallel beam of light of diameter 1 mm enters a concave lens of focal length
100 mm. The beam expands and is at a diameter of 5 mm where it enters a convex lens
of focal length 100 mm. The beam is then brought to a focus.

Sketch a typical ray path through the lenses. What is the distance between the two
lenses? What is the distance from the convex lens to the focus of the beam?

8. Write down an expresion for the entropy S of a system in terms of the number of
quantum microstates Ω.

A system is initially in a state 1 and changes to a state 2 such that the number
of quantum states available to the system is increased by a factor e10
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. Calculate the
increase in entropy of the system.

9. In 1987, a supernova exploded at a distance of 50 kpc (1.545 1021 m). Twelve neutrinos
were detected on Earth following this eruption. Assume they arrived 2 hours after the
explosion was seen. Calculate (i) v/c of the neutrinos, and (ii) the travel time of the
neutrinos in their own frame of rest: give your answer in years.

Hint: express v/c in the form 1 − δ.

10. For a particle of rest mass m, derive a formula for the total energy that would be
required in order for it to resolve a structure of size λ. Estimate this for the case of
resolving the internal structure of a nucleus using (i) an electron and (ii) a proton.

11. By treating them both as black bodies estimate the relative amounts of energy
radiated by the Sun and the Earth.

At what wavelength should a distant observer choose to make measurements in order
to maximise the visibility of the Earth against the Sun?

P.T.O.
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12. The wavefunctions of two states of an atom are given by

ψ1(r, θ, φ) = R(r) cos θ cosφ, ψ2(r, θ, φ) = R(r) cos θ sinφ.

Show that these are not eigenfunctions of the angular momentum operator
L̂z = −ih̄ ∂

∂φ
. By considering linear combinations of these two states construct two states

with definite angular momentum in the z-direction.

13. Show that if two springs with spring constants k1 and k2 are connected in series, the
net spring constant of the combination is given by

1

k
=

1

k1

+
1

k2

.

14. A reversible heat pump heats a building to 25◦C using heat from a river at 5◦C.
Derive the efficiency (performance coefficient) for such a pump and calculate the number
of Joules of heat produced in the building by the expenditure of 1J in the pump.

15. Sound waves in a solid obey the dispersion relation:

ω = a sin

(

k

k0

)

where ω is the angular frequency, k the wavenumber and a and ko are constants. Show
that

k2 V 2

p + k2

o V
2

g = a2

where Vp and Vg are the phase and group velocity of the waves.

END OF EXAMINATION PAPER
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PHYSICAL CONSTANTS AND CONVERSION FACTORS

SYMBOL DESCRIPTION NUMERICAL VALUE

c Velocity of light in vacuum 299 792 458 m s−1, exactly

µ0 Permeability of vacuum 4π × 10−7 N A−2, exactly

ǫ0 Permittivity of vacuum 8.854 × 10−12 C2 N−1 m−2

where c = 1/
√

ǫ0µ0

h Planck constant 6.626069 × 10−34 J s
h̄ h/2π 1.054572 × 10−34 J s

G Gravitational constant 6.674 × 10−11 m3kg−1s−2

e Elementary charge 1.6021765 × 10−19 C
eV Electronvolt 1.6021765 × 10−19 J
α Fine-structure constant, e2/(4πǫ0h̄c) 1/137.036

me Electron mass 9.109382 × 10−31 kg
mec

2 Electron rest-mass energy 0.510999 MeV

µB Bohr magneton, eh̄/(2me) 9.27401 × 10−24 J T−1

R∞ Rydberg energy, α2mec
2/2 13.60569 eV

a0 Bohr radius, (1/α) h̄/(mec) 0.5292177 × 10−10 m
Å Angstrom 10−10 m, exactly

mp Proton mass 1.672622 × 10−27 kg
mpc2 Proton rest-mass energy 938.27203 MeV
mnc2 Neutron rest-mass energy 939.56536 MeV

µN Nuclear magneton, eh̄/(2mp) 5.05078 × 10−27 J T−1

fm Femtometre or fermi 10−15 m, exactly
b Barn 10−28 m2, exactly

u Atomic mass unit, m(12C atom)/12 1.660539 × 10−27 kg

NA Avogadro constant, atoms in gram mol 6.022142 × 1023 mol−1

Tt Triple-point temperature 273.16 K

k Boltzmann constant 1.38065 × 10−23 J K−1

R Molar gas constant, NAk 8.3145 J mol−1 K−1

σ Stefan-Boltzmann constant, (π2/60) k4/(h̄3c2) 5.6704 × 10−8 W m−2 K−4

ME Mass of the Earth 5.9742 × 1024 kg
RE Mean radius of the Earth 6.3675 × 106 m
g Standard acceleration of gravity 9.80665 m s−1, exactly
atm Standard atmosphere 101 325 Pa, exactly

M⊙ Solar mass 1.988435 × 1030 kg
R⊙ Solar radius 6.955 × 108 m
L⊙ Solar luminosity 3.846 × 1026 W
T⊙ Solar effective temperature 5780 K

AU Astronomical unit, mean Earth-Sun distance 1.495978 × 1011 m
pc Parsec 3.085678 × 1016 m

Year 3.1536 × 107 s



Exponentials and Logarithms

eln x = x, ln(e) = 1, ln(ea) = a, ln(xa) = a lnx, loga x = lnx/ ln a

eaeb = ea+b, ln(xy) = lnx+ ln y, ln(x/y) = lnx− ln y.

Complex Numbers

The imaginary unit i is defined by i2 = −1; the symbol “j” is sometimes used as well.
A complex number can be written in terms of real and imaginary part, or in terms of
the modulus r and angle θ (de Moivre’s theorem),

r ≡ z = x+ iy = reiθ = r[cos θ + i sin θ], θ = arctan(y/x) .

Under complex conjugation we take i→ −i,
z∗ = x− iy = re−iθ = r[cos θ − i sin θ].

The modulus of z is the real number

|z| =
√
z∗z =

√

x2 + y2.

We can define the sine and cosine in terms of complex numbers by

cos θ =
1

2

[

eiθ + e−iθ
]

, sin θ =
1

2i

[

eiθ − e−iθ
]

.

Trigonometry

sin2 x+ cos2 x = 1,

sin(x± y) = sinx cos y ± cosx sin y,

cos(x± y) = cosx cos y ∓ sinx sin y,

This allows us to derive the following equations

sinx cos y =
1

2
(sin(x+ y) + sin(x− y)) ,

cosx cos y =
1

2
(cos(x+ y) + cos(x− y)) ,

sinx sin y =
1

2
(− cos(x+ y) + cos(x− y)) .

sinx± sin y = 2 sin
1

2
(x± y) cos

1

2
(x∓ y),

cosx+ cos y = 2 cos
1

2
(x+ y) cos

1

2
(x− y),

cosx− cos y = −2 sin
1

2
(x+ y) sin

1

2
(x− y).

sin 2x = 2 sinx cosx,

cos 2x = cos2 x− sin2 x = 2 cos2 x− 1 = 1 − 2 sin2 x.

Hyperbolic functions

coshx =
1

2

[

ex + e−x
]

= cos(ix), sinhx =
1

2

[

ex − e−x
]

= −i sin(ix).

Power Series

Geometric Series

1 + x+ x2 + . . .+ xn =
1 − xn+1

1 − x
,

∞
∑

j=1

xn =
1

1 − x
, |x| < 1.

Binomial expansion

(1 + x)n = 1 + nx+
n(n− 1)

2!
x2 +

n(n− 1)(n− 2)

3!
x3 + . . . ,

(

n
m

)

=
n!

m!(n−m)!
.

Here n is not necessarily an integer. Taylor series of f(x) about x = x0:

f(x) = f(x0) + (x− x0)
df

dx

∣

∣

∣

∣

x=x0

+
1

2
(x− x0)

2 d2f

dx2

∣

∣

∣

∣

x=x0

+ . . .

Some Standard MacLaurin series (Taylor series, but x0 = 0)

ex = 1 + x+
x2

2!
+
x3

3!
+ . . . x ∈ R,

cosx = 1 − x2

2!
+
x4

4!
+ . . . x ∈ R,

sinx = x− x3

3!
+
x5

5!
+ . . . x ∈ R,

ln(1 ± x) = ±x− x2

2
± x3

3
. . . |x| < 1,

(1 ± x)−1 = 1 ± x+ x2 ± x3 . . . |x| < 1.

L’Hôpital’s rule: if f(x0) = g(x0) = 0,

lim
x→x0

f(x)

g(x)
= lim

x→x0

df/dx

dg/dx



Differentiation and integration

Standard derivatives (a is a constant)

f(x) xn eax lnx
df/dx nxn−1 aeax 1/x

f(x) sinx cosx tanx
df/dx cosx − sinx sec2 x

f(x) sinhx coshx tanhx

df/dx coshx sinhx sech2 x

f(x) sin−1(x/a) cos−1(x/a) tan−1(x/a)

df/dx 1/
√
a2 − x2 −1/

√
a2 − x2 a/(a2 + x2)

f(x) sinh−1(x/a) cosh−1(x/a) tanh−1(x/a)

df/dx 1/
√
a2 + x2 1/

√
x2 − a2 a/(a2 − x2)

All of these can be used to calculate integrals. The only one that has a more generic
expression is

∫

1

x
dx = ln |x| + c.

Note the appearance of the constant of integration.

Product rule and integration by parts

d

dx
[f(x)g(x)] =

df(x)

dx
g(x) + f(x)

dg(x)

dx
,

∫

f(x)
dg(x)

dx
dx = f(x)(g(x) −

∫

df(x)

dx
g(x)dx.

Chain rule and integration by substitution

d

dx
f(g(x)) =

df(g)

dg

dg(x)

dx
,

∫

F (g(x))
dg(x)

dx
dx =

∫

F (g)dg.

Partial Derivatives

Given a function of more than one variable, e.g., f = f(x, y), we have

df =

(

∂f

∂x

)

y

dx+

(

∂f

∂y

)

x

dy.

If x = x(r, φ) and y = y(r, φ) we get the chain rule
(

∂f

∂r

)

φ

=

(

∂f

∂x

)

y

(

∂x

∂r

)

φ

+

(

∂f

∂y

)

x

(

∂y

∂r

)

φ

.

Differential equations

The following 3 ODEs can be solved by substituting an exponential solution,

ẏ = λy y = Aeλt

ÿ = −ω2y y = A cos(ωt+ φ)

ÿ + γẏ + ω2
0y = 0 y = Ae−γt/2 cos(ωt+ φ)

In the last equation ω =
√

ω2
0 − γ2/4, and we assume 2ω0 > |γ| (underdamped).

Other useful techniques: Separation of variables, and the use of the “integrating factor”.

Vectors

A vector a is defined by its components as

a = (ax, ay, az) = axî+ ay ĵ + azk̂.

The modulus (length) of a is

|a|(≡ a) =
√

a2
x + a2

y + a2
z =

√
a · a.

Scalar product

a · b = axbx + ayby + azbz = |a||b| cos θ.

Vector product

a× b = (aybz − azby, azbx − axbz, axby − aybx) =

∣

∣

∣

∣

∣

∣

î ĵ k̂

ax ay az

bx by bz

∣

∣

∣

∣

∣

∣

= ab sin θn̂.

The vectors a, b and the unit vector n̂ form a right-handed set.

Scalar Triple Product

a · (b× c) = b · (c× a) = c · (a× b) =

∣

∣

∣

∣

∣

∣

ax ay az

bx by bz
cx cy cz

∣

∣

∣

∣

∣

∣

.

Vector Triple Product

a× (b× c) = b(a · c) − c(a · b).



Coordinate systems

Vector coordinates: The position vector is usually called r,

r ≡ xî+ yĵ + zk̂.

The radial distance from the origin is then

r =
√

x2 + y2 + z2.

The direction of r is given by the unit vector r̂ = r/r.

Plane polar coordinates (in 2D) (r, φ) or (r, θ)

r =
√

x2 + y2, φ = arctan(y/x);

x = r cosφ, y = r sinφ;

r̂ = r/r, φ̂ = (− sinφ, cosφ);

grad = r̂∂r + φ̂∂φ,

dA = rdrdφ (Area element)

Cylindrical polar coordinates (ρ, φ, z)
For ρ and φ read the 2D plane polar coordinates above.

ρ̂ = (cosφ, sinφ, 0), φ̂ = (− sinφ, cosφ, 0);

grad = ρ̂∂ρ + φ̂∂φ + k̂∂z,

dV = ρdρdφdz (Volume element)

Note: One often meets r instead of ρ. Avoid this to reduce confusion.

Spherical coordinates (r, θ, φ)

r =
√

x2 + y2 + z2, φ = arctan(y/x), θ = arctan(
√

x2 + y2/z);

x = r cosφ sin θ, y = r sinφ sin θ, z = r cos θ;

r̂ = r/r, φ̂ = (− sinφ, cosφ, 0), θ̂ = (cosφ cos θ, sinφ cos θ,− sin θ);

grad = r̂∂r + φ̂∂φ + θ̂∂θ,

dV = r2 sin θdrdφdθ = −r2drdφd cos θ (Volume element)

Vector Calculus

grad f = ∇f =

(

∂f

∂x
,
∂f

∂y
,
∂f

∂z

)

divψ = ∇ ·ψ =
∂ψx

∂x
+
∂ψy

∂y
+
∂ψz

∂z

curlψ = ∇ ×ψ =

(

∂ψz

∂x
− ∂ψx

∂z

)

î+

(

∂ψx

∂y
− ∂ψy

∂x

)

ĵ +

(

∂ψy

∂z
− ∂ψz

∂y

)

k̂,

∇2f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2

=
1

r2
∂

∂r

(

r2
∂

∂r
f

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂

∂θ
f

)

+
1

r2 sin2 θ

∂2

∂φ2
f,

div grad f = ∇2f,

curl grad f = 0,

div curlψ = 0,

curl curlψ = grad(divψ) −∇2ψ.

Stokes theorem:
∫

S

(curlF ) · dS =

∮

δS

F · dr,

(δS is the curve bounding the surface S.)

Divergence theorem

∫

V

divF dV =

∫

S

F · dS,

(S is the surface of the volume V )


